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1. INTRODUCTION 
 
In recent years, widespread use has been made of Stated Preference (SP) 
data, but consensus concerning appropriate approaches has not been 
achieved.  Instead, a number of competing ‘schools’ – in the US, Australia 
and Japan as well as in Europe – have each developed their own 
methodology and although there is argument between them there has been 
little attempt to review the alternative approaches and select the best of each. 
 
Disagreement between the schools extends to many areas of SP practice but 
is particularly marked in the design of experiments.  For this reason, a study 
of SP experimental design was undertaken (Sanko 2001), which is 
summarised in the present paper.  An attractive approach is to review as 
many of the competing approaches as can be understood from the published 
literature, to review these critically in the light of the alternatives adopted by 
other groups and to identify the most appropriate for specific circumstances.  
The literature is diverse, ranging from papers in academic journals to 
commercial advertising, and another aim of the study is to help researchers 
confronted by this mass of information.   
 
In this study, the focus was on SP using choice experiments.  Other methods 
of elucidating preference require different design procedures and a 
consideration of these was beyond the scope of the present study.  
Nevertheless, choice experiments are a widely-used SP procedure and a 
resolution of the design issues for this procedure would be useful.  Special 
attention is given to statistical aspects of the design. 
 
The attention throughout is on deriving recommendations for practical work.  
In some cases it is possible to lay out clear alternatives for use in different 
circumstances, but some areas are clearly in need of further work.  The paper 
gives an overview of a number of relevant design approaches, associated 
problems and possible solutions.  It ends by providing a practical step-by-step 
framework for experimental design for SP choice experiments; the examples 
in this paper are for binary choice but the principles extend to multiple 
choices. 
 
2. TERMINOLOGY 
 
To clarify the discussion it is necessary to define some of the terms used to 
describe choice experiments – usage differs among the various researchers 
working in the field.  Figure 1 illustrates the main features of a typical SP 
experiment.  A respondent is asked to make a series of choices.  In this case, 
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the Figure shows N such choices, which are organised into a game or 
experiment.  In a practical survey, one, two or sometimes more games may 
be presented to each respondent. 
 
In each choice, the respondent must select one of the alternatives in the 
choice set.  In this example, the choice set has two alternatives which are 
identified by a name or brand, in this case RAIL and AUTO (an ‘opt-out’ 
response, i.e. “neither of the above” is sometimes also presented).  In this 
paper, attention is given only to the most common case, that of the fixed 
choice set.  Variation in the choice set can be handled in a separate game but 
we do not consider issues of design between games. 
 
An alternative is characterised by its attributes and attribute levels.  In the 
example, RAIL has four attributes: Travel Time, Headway, Cost and Change.  
The attributes have specific levels in each choice, for example, Travel Time 
has three levels: 40, 50 and 60 minutes.  The combination of levels presented 
in a specific choice is called a scenario. 
 
The SP design issue, as considered in this paper, is exactly how Figure 1 
should be constructed for each respondent. 
 
Figure 1: Choice-Based SP Game 
 

Travel Time:  40 minutes 
Headway:  10 minutes 
Cost:   $3.50 
Change:  Once 

RAIL 

Travel Time:  50 minutes 
 
Cost:   $1.50 
 

AUTO 

Which of these alternatives would you choose? 
1 

2 

N 

Choice 

N choices in 
game Alternatives 

40 minutes 
50 minutes 
60 minutes 

Attributes Attribute 
levels 

Brand 

3 levels 

 
 
 
3. FUNDAMENTAL DESIGNS 
 
In principle, the simplest organisation of a game, once attribute levels have 
been fixed, is to present all the possible combinations to each respondent.  
This is called a full factorial design and forms the basis from which other 
designs can be derived. 
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3.1 Full Factorial Design 
 
The specification of a full factorial design is straightforward: an example is 
illustrated in Table 1, which shows the design for a game with three attributes, 
each of two levels.  The design can also be presented numerically, as shown 
in the right side of the table, and in that form it is transferable to any other 
context of three attributes with two levels. 
 
Table 1:  Full Factorial Design: three attributes, two levels each 
 

Attributes  Attributes Scenario 
Fare Time Freq  

Scenario 
At.1 At.2 At.3 

1 High Slow Low  1 0 0 0 
2 High Slow High  2 0 0 1 
3 High Fast Low  3 0 1 0 
4 High Fast High  4 0 1 1 
5 Low Slow Low  5 1 0 0 
6 Low Slow High  6 1 0 1 
7 Low Fast Low  7 1 1 0 
8 Low Fast High  8 1 1 1 

 
An important characteristic of the full factorial design is that of orthogonality, 
that is, the values of the attributes are independent.  In the full factorial 
design, orthogonality applies also to interactions between the attributes, so 
that if the value of one attribute depends on the value of another, this can be 
fully identified from the experiment. 
 
However, it is clear that when the number of attributes or the number of levels 
increases, the number of scenarios required for a full factorial design can 
become very large.  For example, if there are four attributes, each with four 
levels, the full factorial design requires 44 = 256 scenarios. 
 
3.2 Fractional Factorial Design 
 
A fractional factorial design is based on a systematic selection of a number of 
rows from a full factorial design.  For example, using the shaded rows in Table 
1 would represent a fractional factorial design.  The obvious advantage of a 
fractional factorial design is that it reduces the number of scenarios that are 
presented to respondents. 
 
A potential problem with fractional factorial designs is that orthogonality is lost 
in at least some respects.  This may affect the main effects, i.e. the values of 
the attributes themselves become correlated, but it is not always the case, for 
example in the shaded rows of Table 1.  It is very likely that it will affect 
interactions, i.e. it may become difficult (or impossible) to identify interactions 
between some or all the attributes when smaller fractional factorial designs 
are used.  In the shaded rows of Table 1, interactions are no longer 
orthogonal. 
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The full factorial and fractional factorial designs were developed for 
experiments in which a single scenario is presented at one time.  In 
experiments based on choices, at least two scenarios are presented so that 
the respondent can choose between them.  This extension adds another layer 
of complexity to the design. 
 
3.3 Creation of Choice Sets 
 
The methods applied in the literature (e.g. Louviere et al. 2000) for combining 
scenarios to obtain choice sets fall into three typical groups. 
 
a. Simultaneous choice set creation 
 
The typical method of this type is the ‘LMN’ procedure, giving choice sets of N 
alternatives with M attributes, each of L levels.  In the example of Table 1, we 
would have L=2, M=3 and N=2, giving 64 choices which cover all possible 
combinations of the levels.  This design can be represented in a single table 
by using separate columns for the attributes of each alternative, thus 
obtaining N*M=6 columns, and in this form a fractional factorial design can be 
developed by selecting rows as was indicated above.  For this particular 
problem, the smallest design that maintains orthogonality for the main effects 
has 8 rows, i.e. 8 choices. 
 
b. Sequential choice set creation 
 
The fold-over design procedure creates the choice sets by creating scenarios 
for subsequent alternatives based on the scenario for the first alternative.  The 
procedure starts from a full or fractional factorial design, which forms the 
scenarios for alternative A.  The scenarios for alternative B are then formed 
by a systematic transformation of the attributes, changing some to the next 
higher value, leaving others unchanged, etc..  A simple change of all the 
attributes to their next level is called shifting; more complicated 
transformations, often involving a random element (shuffle) are called fold-
over designs. 
 
For example, Table 2 shows an application of these procedures to the simple 
problem of Table 1.  Alternative A uses the scenarios of the fractional factorial 
design (i.e. the shaded rows in Table 1).  Alternative B on the left side uses a 
fold-over, changing 0’s to 1’s and 1’s to 0’s for attributes 1 and 2 and not 
changing attribute 3.  On the right side a shifting design is implemented in 
which all attributes change. 
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Table 2: Two Fold-overs based on Fractional Factorial Design 
three attributes, two levels each, as in Table 1 

 
Fold-over without Shuffle  Shifting 

Alt. A Alt. B  Alt. A Alt. B 
Ch. 

At.1 At.2 At.3 At.1 At.2 At.3  
Ch. 

At.1 At.2 At.3 At.1 At.2 At.3 

1 0 0 0 1 1 0  1 0 0 0 1 1 1 
2 0 1 1 1 0 1  2 0 1 1 1 0 0 
3 1 0 1 0 1 1  3 1 0 1 0 1 0 
4 1 1 0 0 0 0  4 1 1 0 0 0 1 

 
c. Randomised choice sets 
 
Randomised choice sets are generally based on a full or fractional factorial 
design.  Then alternatives are randomly selected (with or without 
replacement) from these to present to the respondent.  When both 
alternatives relate to the same brand, selections are generally made from a 
single set; when alternatives relate to different brands, as in the example, 
selections are generally made from two independently created factorial 
designs. 
 
4. PROBLEMS OF FACTORIAL DESIGNS 
 
As has already been indicated, the key problem with the full factorial design is 
that it generates too many scenarios.  In the context of a survey in the field, 
this is not acceptable because of the impact on respondents.  A fractional 
factorial design obviously reduces the problem, but in the context of choice 
experiments there may still be too many choices to be made. 
 
Another problem is dominance.  In factorial designs, there are often choices in 
which one alternative ‘dominates’ the other, i.e. it is better on all the attributes.  
In Table 1, for example, scenario 8 dominates all of the others, so any choice 
in which it appears is ‘trivial’, i.e. the response is in principle known in 
advance and does not, in principle, add any useful information.  In some 
cases, it is not clear whether an attribute is of positive or negative value (e.g. 
‘smoking is permitted’) but often, as in the example, it can be expected that all 
respondents ought to take the same view.  Even when ambiguously valued 
attributes are included, dominance can apply between alternatives for which 
this attribute is the same. 
 
Assuming transitivity, the notion of dominance can be extended.  If, say, in 
choice 1, scenario A is preferred to scenario B and if, in choice 2, scenario B 
is preferred to scenario C, then in choice 3 comparing scenarios A and C 
ought to produce an obvious answer.  This is simply the application of 
transitivity.  Going further, if a respondent in the game of Table 1 chooses 
scenario 2 over scenario 3, then (because scenario 6 dominates scenario 2) 
we can avoid asking for the comparison of scenarios 6 and 3 in later choices.  
This effect can be termed transitivity + dominance. 
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In some cases, contextual constraints apply which constitute another potential 
problem. This may mean that certain combinations of attributes are not 
reasonable.  For example, if driving time and distance were attributes of a car 
journey, we would do well to ensure that the speed implied by each 
combination of attributes was reasonable before presenting it to respondents. 
 
Finally, the issue of orthogonality is more complicated than it may appear.  A 
simple point made by Hensher (1994) is that in choice modelling orthogonality 
needs to apply to attribute differences rather than to the base values 
themselves, because it is the differences between the attributes that drive a 
choice model.  However, in modelling it is often necessary to change the 
formulation of the variables, e.g. by non-linear transformations, or to introduce 
interaction terms with socio-economic variables.  Orthogonality with respect to 
these transformed variables is effectively impossible to achieve in advance.  
In any case, the direct relationship between design  attribute  orthogonality 
and parameter estimate orthogonality, which applies for linear models, does 
not apply for non-linear models used to represent choice.  
 
The avoidance of these problems and the maintenance of efficiency in 
estimation is the key task of developing practical designs which build on the 
factorial designs and basic choice set creation procedures discussed above. 
 
5. ASSESSMENT OF FACTORIAL DESIGNS 
 
The design methods presented in Section 3 can be assessed in the light of 
the problems discussed in Section 4. 
 
a. Simultaneous choice set creation (LMN) 
 
The advantage of this approach is its simplicity and orthogonality, achieved at 
the expense of a large number of choices.  However, a further problem with 
this approach is that a large fraction of the choices are trivial since one 
alternative dominates the other.  This is illustrated in Table 3, which applies to 
the example introduced in Table 1.  In this case, no fewer than 46 of the 64 
choices are trivial, if we assume that attribute level 1 is always preferable to 
level 0. 
 
Table 3: LMN Method for Full Factorial Design  

 (Binary, Three Attributes, Two Levels Each) 
 

Alternative A Alternative B Choice 
Fare Time Freq Fare Time Freq 

Trivial 

1 0 0 0 0 0 0 Trivial 
2 0 0 0 0 0 1 Trivial 
… … … … … … … … 
13 0 0 1 1 0 0 OK 
14 0 0 1 1 0 1 Trivial 
15 0 0 1 1 1 0 OK 
… … … … … … … … 
64 1 1 1 1 1 1 Trivial 
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b. Sequential choice set creation 
 
This procedure greatly reduces the number of choices relative to 
simultaneous creation of choice sets.  Moreover, the frequency of trivial 
choices depends on the way in which attribute shifting is implemented and the 
efficiency of the design can work out substantially better.  For example, in the 
minimal shifting design (mentioned above) for the example of Table 1, there 
are just 2 trivial choices of the 8 that are needed. 
 
c. Randomised choice sets 
 
In this case, the number of choices for each individual is controlled by the 
analyst.  In principle, if homogeneity is assumed, there is no loss in the 
identification of effects relative to the design on which the random 
experiments are based. 
 
In the standard example, 28 different choice sets (8 * 7 / 2) can be created, a 
full set, and sampling can be done within this set.  However, 19 of the 28 
choices are trivial. 
 
6. OTHER METHODS 
 
We have illustrated in sections 4 and 5 some of the main problems associated 
with factorial designs.  Below we present a number of practical methods to 
overcome these problems.  The starting point or benchmark for the 
comparison is the full factorial design.  For each method we briefly describe: 
 

• the purpose, the problem it aims to address, 
• the main approach to solving the problem, 
• the underlying assumptions that are implicit in its use, 
• the trade-off involved, what is sacrificed and 
• the justification for its use. 

 
6.1  Fractional Factorial Design 
 
As we have seen already, the main aim of the fractional factorial design is to 
reduce the number of scenarios offered to each respondent.  This is achieved 
by carefully selecting a specific subset of scenarios from all the scenarios 
included in the full factorial design, in such a way that the main effects can still 
be properly estimated.  The trade-off is that some or all of the interactions can 
not be estimated and hence the implicit underlying assumption is that these 
are not significant in explaining preferences.  In practical research it has often 
been observed that indeed the main effects account for most of the observed 
variance in the preferences, and the interactions add little to that, although in 
some cases specific interactions may be of importance (Louviere, 1988). 
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6.2  Removing Trivial Choices 
 
This is another method to reduce the number of choices offered to the 
respondents, while it also avoids asking questions to the respondents that 
yield no meaningful information (and may indeed generate irritation among 
the respondents).  Trivial choices can be identified using information about the 
sign of the utility associated with the attribute, together with dominance and 
transitivity assumptions.  By removing trivial choices, however, orthogonality 
is normally lost, and estimation problems may arise.  One approach that has 
been used to overcome such problems at estimation stage has been to re-
insert the removed trivial choices prior to estimation, together with inferred 
preferences (based on the assumed transitivity and dominance rules).  
However, this approach cannot be recommended as it simply adds arbitrary 
‘information’ to the data.   
 
6.3  Contextual Constraints 
 
By removing scenarios that are technically impossible or highly unlikely, the 
SP exercise preserves credibility for the respondents, and at the same time 
the number of scenarios is reduced.  However, this normally leads to 
correlations between the attributes, and hence loss of orthogonality.  Note that 
here it would be impossible to re-insert the removed scenarios prior to 
estimation (see 6.2) even if we wanted to, as the preferences cannot be 
inferred.  The application of contextual constraints to eliminate scenarios 
requires prior knowledge about what is technically impossible and seen by the 
respondents as unlikely or unreasonable. 
 
An alternative approach to eliminating certain impossible or unlikely scenarios 
is retaining the scenarios but with modification of one (or more) attribute levels 
relative to the experimental design.  In this way the correlation effect (and 
hence the estimation problem) can be reduced, but not always avoided.  The 
number of scenarios remains the same.     
 
6.4  Use a Block Design 
 
Another approach to reducing the number of choices offered to a single 
respondent is by dividing the full set of choices of a single experiment into two 
(or more) subsets (separate experiments or “blocks”), each of which is offered 
to different respondents. For example a full factorial design may be 
subdivided into four fractional factorials (a), or a fractional factorial may be 
subdivided into four partial subsets (b). In case (a) individual level estimation 
of the main effects is still possible, but the interactions can only be estimated 
by pooling data of multiple respondents. In case (b) even estimation of the 
main effects only requires pooling of observations.  A key requirement for this 
is that the underlying assumption, homogeneity of the preferences across the 
respondents, is a valid one. 
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6.5  Use Common Attributes in Multiple Experiments 
 
If the number of attributes to be included in a SP experiment becomes large 
(normally more than say 5 or 6) it is no longer possible to include them all in 
one single experiment.  This is because the number of required scenarios 
becomes too large, but also because it leads to information overload for the 
respondents (too many attributes to consider simultaneously).  In such cases, 
the very large single experiment can be divided into multiple sub-experiments, 
each containing only some of the attributes, but which all have one attribute in 
common (typically price).  This design makes it impossible to identify 
interactions between attributes which are in different games, so the 
subdivision requires some careful structuring.  It also requires that the 
common attribute is estimated with reasonably high accuracy in all the sub-
experiments, so that the estimation results can be related to each other by 
using the estimates for the common attribute.  
 
6.6  Define Attributes in Terms of Differences between Alternatives 
 
As we have seen in section 4, choice modelling requires that the differences 
between the attributes in the choice pairs are orthogonal rather than the 
absolute levels.  One way to ensure this is by explicitly specifying the 
attributes in terms of differences between the alternatives, rather than in 
absolute levels for each of the alternatives.  A key requirement for this is that 
all attributes are “generic’, i.e. they apply to all alternatives in the same way. 
Attributes which are specific to a single alternative only can not be used.  This 
method is useable when the SP experiment investigates preferences for 
different versions of the same type of alternative, also indicated as “within-
mode” experiments.  
 
6.7  Show One Design Differently 
 
This technique uses a single basic statistical design, but in mapping the 
attribute levels onto the experimental design, random variation is introduced. 
As a consequence the same experimental design actually looks different to 
different respondents.  This approach may be used when the base fractional 
factorial design enables only some of the interactions to be estimated or even 
none.  By randomly showing the design differently to the respondents, all the 
interactions may be estimated by pooling the observations.  As in 6.4 this 
presupposes homogeneity of preferences.  A side benefit is that the 
randomisation will avoid any possible influence of the order in which the 
attributes are presented, and may increase the efficiency of the estimation. 
 
6.8  Random Selection 
 
A final technique to mention here, which is sometimes used to reduce the 
number of choices to be evaluated by each respondent, is the random 
selection of choices  from a factorial design.  In a way this is similar to using a 
block design, but here the selection is done randomly rather than by the 
“block” logic.  As a consequence, individual level estimation is not possible, 
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and orthogonality will normally be lost.  But by pooling all observations and 
assuming homogeneity, all the parameters can be estimated. 
 
7.  SETTING ATTRIBUTES AND ATTRIBUTE LEVELS 
 
We have discussed the need to limit the number of scenarios which is offered 
to the respondents for evaluation for practical reasons.  Given the nature of 
experimental designs, this in turn limits the number of attributes and levels 
that may be presented in any one experiment.  
 
Normally the number of attributes to be included in a single experiment should 
be limited to a maximum of 6 or 7 (in most cases 4 or 5 attributes works well). 
In case valuations for more than 7 attributes are required, the solution 
described in 6.5 may be used. 
 
Concerning the attribute levels, the need to ensure that competitive trade-off 
decisions are presented requires: 
 
1. that attribute levels presented to the respondents cover a sufficiently wide 

range to include likely boundary values (implicit trade-off switching points) 
between attributes, and 

 
2. that attribute levels are sufficiently evenly spread to allow sufficiently 

accurate estimates of the parameters, whatever their actual values may 
be within the range. 

 
This, in combination with the limited a priori information that may exist with 
regard to the boundary values, tends to increase the number of attribute 
levels.  One practical way of allowing a large number of attribute levels across 
all responses while limiting the number to three or so for each individual 
respondent is by randomly selecting say 3 levels for each respondent from a 
larger total number of levels.  This concept is similar to what was outlined in 
6.4 and 6.8, but applied to attribute levels rather than scenarios.  
 
When good a priori information is available about parameter values, designs 
can be highly optimised (see 8.2), but this will not often be the case. 
 
8. DEPARTURES FROM THE ORTHOGONAL DESIGN 
 
When the objective is to estimate mean coefficient values with minimal 
standard error, then an orthogonal design (the closest approximation of 
estimation data orthogonality) provides, for a given sample size and when a 
linear model is used, the best result.  In other cases, however, this is not 
necessarily the case.  Toner et al. (1999) found that when non-linear models 
are used (and nearly all choice models are non-linear) the orthogonal design 
does not always minimise the variance.  Further, Fowkes et al. (1993) 
demonstrated that in some specific cases important reductions of error 
variance of the estimates could be obtained by using non-orthogonal designs.      
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8.1 Ratio Estimators 
 
When the main objective of a SP experiment is to provide estimates of the 
monetary value-of-time (or a similar trade-off ratio), the analyst needs to 
minimise the error variance of the ratio estimators (time coefficient divided by 
cost coefficient), given approximately by 

c.o.v. 2 (β1 / β2)  ≈  c.o.v. 2 (β1)  + c.o.v.2 (β2)  – 2. ρ12. c.o.v. (β1) . c.o.v. (β2) 
 
where c.o.v. is the coefficient of variation, the standard error divided by the 
estimate of the parameter, the β’s represent the coefficients to be estimated 
and ρ gives the correlation of the estimates. 
 
If the values of the two coefficients were known, the level of correlation that 
maximises the accuracy of the ratio estimator could be determined in 
advance.  In reality, of course, the analyst does not have exact knowledge 
about the values of the coefficients before the experiment, so one cannot 
really optimise.  But by using some prior expected values, a reasonable 
estimate can be obtained of the amount of correlation that would be 
approximate to improve the estimation (see Fowkes et al. (1993)). 
 
8.2 The “Magic” Choice Probability 
 
Another interesting design issue is the identification of what Toner et al. 
(1998) called “the magic P”, based on much earlier work by Gunn (1983).  
They demonstrated that, for a two variable binary logit model and generic 
coefficients, the necessary condition for the variance of each of the 
coefficients to be minimised is to specify the two alternatives so that their 
utility difference is about ± 2.4.  This leads to the “optimal” choice probabilities 
for the two alternatives of 0.917 and 0.083, the magic P. This is in conflict with 
the intuitive belief held by many researchers (e.g. Bates, 1994) that the most 
useful information is obtained where respondents are on the borderline 
between one alternative and another (i.e. P= 0.50). 
 
9. SP DESIGN FRAMEWORK 
 
Having covered some of the main issues involved in the design of SP choice 
experiments, we now turn to providing practical researchers some help in 
designing their SP choice experiments.  In order to do this we have designed 
a systematic approach to SP design.  The starting point for the framework is a 
full factorial design, derived from the specification of the attributes and 
attribute levels that need to be included in the experiment (Step 1).  Then we 
ask 8 questions to address the problems involved in the use of the full 
factorial, to arrive at an appropriate practical SP design (Steps 2 through 9). 
This process is summarised in Figure 2.  In the different steps we give 
recommendations, where possible, of recommended “default” strategies, 
based on the discussion above and our practical experience; these are 
marked with an asterisk in the figure. 
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Step 1: Setting attributes and attribute levels (see Section 7) 
 
Here you need to specify which attributes you want to include in the 
experiment, and how many levels you set for each attribute.  Generally more 
than 2 attributes are suggested to be included in the experiment, and more 
than 2 levels are suggested to be included in the important attributes.  If you 
want to investigate non-linear effects you need at least 3 levels.  You are 
advised to check the boundary values, and set attribute levels in order to 
obtain reasonable trade-off values.  When you are interested in “define 
attributes in terms of differences between alternatives” (see 6.6) you need to 
consider this here. 
 
Step 2: Is it possible to treat all the attributes in one SP exercise? 
 
An upper limit of the number of attributes in one experiment is 6 or 7; in 
practice 4 or 5 attributes are often used. When you treat more than 5 
attributes it is worth considering assigning the attributes to more than one 
experiment, while using (at least) one common attribute (see 6.5). Since it is 
impossible to estimate interaction effects between attributes included in 
different experiments, you need to think which interactions you are interested 
in, and put these attributes in the same experiment. 
 
Step 3: Should you use an orthogonal design? 
 
If you are primarily interested in an analysis of the ratio between two 
estimates (e.g. value-of-time) and have a priori knowledge of the estimated 
parameters, then you can develop a correlated design along the lines Fowkes 
(1993) proposed for this (see 8.1).  Or you may also want to consider the  
‘Magic choice probability’ if you have a priori knowledge of the parameters to 
be estimated (see 8.2).  In both cases you can skip steps 4 to 9.  However, 
these two methods are relatively new and require advanced statistical 
knowledge and knowledge of the parameter values.  If you don’t have this 
knowledge, we do not recommend these methods. In those cases, or if you 
are not interested in the departure from orthogonal design anyway, go to Step 
4.  
 
Step 4: Are you interested in interactions? 
  
In many cases it is possible to concentrate in the research on the main effects 
only, as important interactions between attributes are not known or expected 
to exist.  In such cases we recommend ignoring all interactions, following 
stream C in Figure 2.  Here you use a fractional factorial design with the 
minimum number of scenarios.   
 
In other cases, however, interactions are known to be of importance, and this 
needs to be taken into account in the experimental design. If all interactions 
are to be investigated, a full factorial design is needed which brings you to 
Stream A in Figure 2. If some interactions are to be considered, an 
appropriate fractional factorial design will be needed. In case you are able to 
accommodate a fractional factorial design which includes all interactions you 
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are interested in, we call this an “enough fractional”, which we classify again 
under stream A.   
 
If you are interested in some interactions, but can not accommodate these 
(e.g. because the number of scenarios of the enough fractional becomes too 
large), we suggest Stream B in Figure 2. Here you will need a small fractional 
factorial design designed to measure only some key interactions (or even 
none at all) combined with the “show one design differently” method (see 6.7). 
If you can assume homogeneity this allows you to estimate some or even all 
of the interactions across the sample, provided the sample size is adequate.  
The difference from the stream A and C designs is related to the way in which 
the interaction effects are treated:  
 
• in stream B you rely on the “show one design differently” method to be 

able to estimate the interaction effects across the sample;  
• in stream A the design is set up to measure the interaction effects for each 

respondent separately; 
• in stream C interaction effects are ignored. 
 
Within streams A, B and C the usual approaches can be followed to arrive at 
suitable choice pair designs (see 3.3): simultaneous, sequential or 
randomised  choice set creation.  
 
We want to emphasize that it would be, in our view, highly useful to further 
investigate the issue of the use of the different methods to estimate interaction 
effects within and across respondents. Using Monte Carlo simulation methods 
more insights should be obtained into the practical differences between the 
stream A and stream B approaches, and the associated requirements in terms 
of sample sizes. We recommend more research in this area, particularly 
focused on SP choice designs. Until such research has been carried out, it 
would be prudent to follow the stream A approach to measure key interaction 
effects. 
 
Step 5: Do you want to show one design differently? 
 
In the process of reducing the number of scenarios to be evaluated, some of 
the advantages of the original factorial designs are lost. As we have seen 
already in Step 4 one possible solution is showing one design differently for 
each respondent.  This is particularly advantageous for designs created 
through stream B of Step 4, but is possibly also useful for stream C designs.  
Further research would be desirable here. 
 

Step 6: Are you concerned about contextual constraints? 
 
If you are interested in maintaining as much as possible reality in your 
experiment, which should normally be your aim in any SP experiment, you 
should remove (or modify) choice pairs which contain scenarios which are in 
conflict with contextual constraints (see 6.3). In this process, you lose 
orthogonality.  
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Step 7: Do you care about trivial questions? 
 
The use of any experimental design will lead to a number of trivial questions, 
due to dominance (see 6.2).  Often these can be identified in advance.  We 
would recommend that the questions which are certainly trivial should be 
removed.  If they are removed, orthogonality is lost, but the respondent is less 
likely to lose interest in the choice experiment.  It can be useful to keep at 
least one trivial choice pair in the experiment as a means to check the 
reliability of the responses given by the respondents.  In identifying and 
removing trivial questions you need to be very careful not to make strong 
assumptions on preference. 
 
Step 8: Do you need to make a special allocation of tasks to 
respondents? 
 
It is generally recommended to limit the number of choice pairs for each 
individual. Pearmain et al. (1991) suggested a maximum of 9 to 16 choices 
per respondent (for a single experiment) and Bradley and Daly (1991) showed 
that the quality of responses declined as the number increased in this range.  
If you need more scenarios, a task allocation strategy is recommended.  
There are two techniques to do this: 
 

• Use of a Block design (see 6.4); 
• Use of Random selection (see 6.8). 

 
Step 9: Can you assume transitivity? 
 
Another strategy to reduce the number of choices to be made by each 
respondent, is to use transitivity to remove trivial scenarios based on former 
responses (see 4 and 6.2).  In this case orthogonality is lost, but unnecessary 
questions are avoided. Unlike trivial questions related to dominance, these 
cannot be identified before the interview, but need to be established during 
the interview itself. This is difficult or impossible using conventional 
questionnaires, but can be done effectively when computer based 
interviewing takes place using appropriate software, e.g. WinMINT.  
 
Concluding remarks 
 
Having described the Steps 1 to 9 which we feel are a suitable process to 
arrive at an appropriate design for SP choice experiments, we want to make a 
few concluding remarks. 
 
Firstly the description here has concentrated on alternatives of the same 
brand, also indicated as “within mode” alternatives.  For “between mode” 
alternatives the same logic applies, but due to differences in the number of 
attributes or attribute-levels, some complications may arise.  
 
Secondly we want to emphasise that every SP experiment, even the best 
designed one, should always be carefully piloted in the field, followed by a 
proper analysis of the pilot data. This is really the only way to establish the  
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Figure 2: SP Design Framework 
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quality of the measurement instrument, and the practical ability to obtain all 
the desired estimates.   
 
Thirdly we want to argue for “virtual piloting” prior to the real pilot, as part of 
the design stage, by means of Monte Carlo simulation.  Specialised software 
is available for this (e.g. SPEED developed by Hague Consulting Group), 
even the use of simple spreadsheet software enables the serious analyst to 
easily investigate the quality of SP designs.  Simulation is a powerful tool, and 
an excellent means to assess elements of uncertainty in the design, although 
the results may depend on the assumptions made. 
 
10. CONCLUSION 
 
In this paper we have discussed some of the main issues involved in 
developing an appropriate experimental design for SP choice experiments. 
We have brought together a number of SP design elements from different 
“schools”, and recommended a practical step-by-step approach. It is clear, 
however, that more research needs to be done to investigate the merits of 
some of the proposed approaches, so that their potential benefits can be 
assessed and hopefully made available to a larger audience.  
 
In particular we would like to recommend further research in the following 
specific areas: 
 
• the use of the “show one design differently” (randomisation) method to 

estimate interaction effects across the sample which cannot be identified 
at individual level, and their homogeneity and sample size requirements; 

• the use of “removing trivial choices” and “contextual constraints”, and their 
impact on the error variance of the estimates; 

• the use of correlated designs and the “magic P” in practical multi-attribute 
experiments to obtain minimum error-variance estimates, preferably 
without requiring exact a priori knowledge of the parameters; 

• the more general issue of how to create designs that minimise the error 
variance of the estimates when non-linear models such as logit are used. 

 
In our view, these issues concerning SP choice design for efficient estimation 
should be systematically investigated using both Monte Carlo simulation and 
empirical SP data.  
 
In the meantime, we hope that our paper will be of help for practical users in 
selecting the right, or at least an appropriate mix of more conventional 
methods to the design of SP choice experiments. 
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